Моисеева Карина Абдукахоровна

АЛГОРИТМ ЛАБОРАТОРНОЙ ДИАГНОСТИКИ ДИАРЕЙ У КРУПНОГО РОГАТОГО СКОТА, АССОЦИИРОВАННЫХ С ТОКСИНПРОДУЦИРУЮЩИМИ ШТАММАМИ CLOSTRIDIUM PERFRINGENS

4.2.3. Инфекционные болезни и иммунология животных

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата ветеринарных наук

Работа выполнена на кафедре микробиологии, вирусологии и иммунологии Федерального государственного бюджетного образовательного учреждения высшего образования «Санкт-Петербургский государственный университет ветеринарной медицины» (ФГБОУ ВО СПбГУВМ).

Научный руководитель: Сухинин Александр Александрович, доктор биологических наук, профессор

Официальные оппоненты:

Галиуллин Альберт Камилович, доктор ветеринарных наук, профессор, ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана», заведующий кафедрой микробиологии, вирусологии и иммунологии

Спиридонов Геннадий Николаевич, доктор биологических наук, ФГБНУ «Федеральный центр токсикологической, радиационной и биологической безопасности», заведующий лабораторией бактериальных патологий животных

Ведущая организация — Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

Защита состоится «21» декабря 2023 года в 13.00 часов на заседании диссертационного совета 35.2.034.01 при ФГБОУ ВО «Санкт-Петербургский государственный университет ветеринарной медицины» по адресу: 196084, Санкт-Петербург, ул. Черниговская, д. 5, тел. (812) 388-36-31.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО СПбГУВМ по адресу: 196084, Санкт-Петербург, ул. Черниговская д. 5., и на официальном сайте http://spbguvm.ru.

Автореферат разослан: « » октября 2023 г.

Ученый секретарь диссертационного совета

Кузнецова Надежда Викторовна

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Скотоводство является одной из ведущих отраслей животноводства, обеспечивающей население России и мира ценными продуктами питания и сырьем для промышленной переработки. Важным эпизоотическим, эпидемиологическим и экономическим аспектом является сохранение здорового поголовья животных (Безбродова Н.А., 2020; Капустин А.В., Алипер Т.И., 2017; Спиридонов А.Г. и др., 2022).

Среди болезней, сопровождающихся поражением желудочно-кишечного тракта, одно из ведущих мест занимает энтеротоксемия, ассоциированная с Clostridium токсинпродуцирующими штаммами perfringens, распространенная на территории Российской Федерации и за рубежом (Супова А.В. и др., 2022; Капустин А.В., 2019; Крамер Ю.Н., 2020; Новгородцева А.К., Плешакова В.И., 2021; Пименов Н.В. и др., 2016; Глотова Т.И. и др., 2023). Возбудитель содержится в биологических жидкостях животных, почве, воздухе, воде, мясе животных (Пилипенко И.В., 2015). Крупный рогатый скот является как источником возбудителя инфекции, так и восприимчивым животным, а содержимое прямой кишки и другие пути выделения возбудителя инфекции в окружающую среду – фактором передачи возбудителя; тем самым периодически или одновременно являясь каждым звеном эпизоотической цепи (Сидорчук А.А. и др., 2021). А-токсин Clostridium perfringens повреждает фосфолипидные мембраны, из-за чего его считают одним из сильнодействующих ядов (Uzal F.A. и др., 2018).

Патологический процесс обуславливается комплексным действием токсинов и ферментов Clostridium perfringens, ядовитыми продуктами распада бактерий и клеток макроорганизма (Галиуллин А.К. и др., 2022; Спиридонов А.Г. и др., 2022). Экономический ущерб обусловлен летальностью, снижением количества и качества молочной и мясной продукции. Смертность молодняка достигает до 25,0 % (Козлова А.Д. и др., 2017). Данные отечественной и зарубежной литературы свидетельствуют о том, что инфекционные диареи крупного рогатого скота вызваны ассоциацией рота-, корона-, герпесвирусов и токсигенных штаммов бактерий: В условиях скотоводческих хозяйств практически всегда наблюдается смешанная инфекция (Хурамшина М.Т. и др., 2020; Hang B.P. и др., 2019). В настоящее время недостаточно освещена методология диагностики диарей, вызванных токсинпродуцирующими Clostridium perfringens, штаммами что относится К актуальным ветеринарной задачам медицины, трудновыполнимым продукция скотоводства может быть источником инфекции для людей (Лобзин Ю.В. и др., 2021).

Своевременная диагностика диарей как симптомокомплекса инфекционной болезни, соблюдение алгоритма и выбор оптимального метода диагностики будут способствовать этиологической расшифровке диарей, ассоциированных с токсинпродуцирующими штаммами Clostridium perfringens у крупного рогатого скота.

Степень разработанности темы исследования. В настоящее время Сухиной М.А. и соавт. в 2018 году предложен алгоритм лабораторной диагностики Clostridium difficile — ассоциированной диареи в эпидемиологии, который широко применяется в медицинской практике. Алгоритм диагностики диарей, ассоциированных с токсинпродуцирующими штаммами Clostridium perfringens, отсутствует в ветеринарной практике. В то же время его применение особенно оправдано при лабораторной диагностике этиологии диарей, причиной которых могут быть бактерии, вирусы, паразиты и простейшие.

Цель и задачи исследований. Цель работы — разработать и апробировать на территории Северо-Западного федерального округа алгоритм лабораторной диагностики диарей, ассоциированных с токсинпродуцирующими штаммами *Clostridium perfringens* у крупного рогатого скота.

Для достижения указанной цели поставлены следующие задачи:

- 1. Установить биологические свойства токсинпродуцирующих штаммов *Clostridium perfringens*, выделенных из биоматериала крупного рогатого скота с диарейным синдромом в Северо-Западном федеральном округе и провести экспресс-индикацию энтеротоксина с помощью иммуноферментного анализа для выявления токсина возбудителя.
- 2. Определить видовой состав микроорганизмов в патологическом материале от крупного рогатого скота с диарейным синдромом методом секвенирования нового поколения.
- 3. Синтезировать и апробировать праймеры, кодирующие ген фосфолипазы С α-токсина *Clostridium perfringens*, синтезировать молекулярный зонд с модернизированным гасителем флуоресценции для обнаружения в материале искомой ДНК.
- 4. Разработать и научно обосновать алгоритм диагностики диарей, вызванных токсинпродуцирующими штаммами *Clostridium perfringens* у крупного рогатого скота.

Научная новизна и ценность полученных результатов. По результатам бактериологического метода исследования установлены биологические свойства выделенных изолятов Clostridium perfringens, выделенных из патологического материала крупного рогатого скота с диарейным синдромом. Определен характер роста Clostridium perfringens на среде системы AnaeroGen W-ZIP Сотраст для контроля роста анаэробов, преимуществами которой служат стабильность готовой питательной среды и отсутствие специальных условий хранения.

апробированы Разработаны, синтезированы и высокоспецифичные праймеры для детекции гена фосфолипазы С СРА для ПЦР-РТ, с использованием модернизированного зонда c измененным гасителем флуоресценции, концентрацией реагентов обеспечивает И режимом амплификации, ЧТО воспроизводимость 99,9%. Проведены бактериологические, на иммунологические молекулярно-генетические исследования И Clostridium perfringens, полученных от крупного рогатого скота Северо-Западного региона.

Впервые в Российской Федерации был разработан и научно обоснован алгоритм проведения клинико-лабораторной диагностики диарей, вызванных токсинпродуцирующими штаммами *Clostridium perfringens* у крупного рогатого скота, заключающийся в пошаговой идентификации возбудителя. Разработаны методические рекомендации «Алгоритм проведения клинико-лабораторной диагностики диарей у крупного рогатого скота, ассоциированных с энтеротоксинпродуцирующими штаммами *Clostridium perfringens*» (утверждены Методическим советом ФГБОУ ВО СПбГУВМ 01 февраля 2023 года, протокол N01).

Теоретическая и практическая значимость. Синтезированные и апробированные высокоспецифичные праймеры с модернизированным зондом для детекции гена фосфолипазы С *CPA* методом ПЦР в режиме реального времени позволяют быстро и качественно обнаружить в исследуемом материале данный возбудитель.

Разработанный алгоритм диагностики, заключающийся последовательной идентификации, ветеринарным В позволит врачам области лабораторной диагностики И специалистам альтернативные методы, необходимые для постановки диагноза.

Результаты исследований по выделению, идентификации и детекции генов Clostridium токсинпродуцирующих штаммов perfringens, лабораторной диагностики из биоматериала от крупного рогатого скота используются в работе Северо-Западной испытательной лаборатории ФГБУ «Федеральный центр охраны здоровья животных» (справка о внедрении результатов научных исследований от 29.05.2023), для проведения лекционных и лабораторно-практических занятий для студентов факультета ветеринарной медицины очной, заочной и очно-заочной форм обучения в курсе ветеринарной «Санкт-Петербургский микробиологии ФГБОУ BO государственный университет ветеринарной медицины» (справка о внедрении в учебный процесс результатов диссертационной работы от 07.02.2023), в производственном процессе при диагностике диарей крупного рогатого скота и планировании противоэпизоотических профилактических мероприятий ЗАО «Предпортовый» (справка о внедрении в производственный процесс результатов диссертационной работы от 23.05.2023). Получен патент на полезную модель «Инструмент для взятия проб фекалий из прямой кишки животных» (RU 204004 U1 от 04.05.2021).

Методология и методы исследований. В работе применены клинический, патологоанатомический, бактериологический, иммунологический, молекулярно-генетический, эпизоотологический, биоинформатический, аналитический и статистический методы. Использованы методологические принципы, учитывающие условия содержания крупного рогатого скота на предприятиях, факторы передачи токсинпродуцирующих штаммов *Clostridium perfringens*, схемы вакцинации от анаэробных инфекций.

Объектом исследования служил крупный рогатый скот, от животных брали пробы содержимого рубца и кишечника, ткани прямого кишечника, гноя и

участков ран копыт, содержимого матки коров дойного стада, молозива и молока. Предметом исследования служили бактерии *Clostridium perfringens*.

Основные положения, выносимые на защиту:

- 1. Комплексный подход исследования биологических свойств изолятов Clostridium perfringens, полученных от крупного рогатого скота Северо-Западного федерального округа, индикации токсина иммунологическим методом позволяют дифференцировать токсинпродуцирующие штаммы Clostridium perfringens от не продуцирующих токсин штаммов.
- 2. Высокоспецифичные праймеры для генов, кодирующих фосфолипазу С *CPA*, позволяют быстро и эффективно обнаружить ДНК токсинпродуцирующих штаммов *Clostridium perfringens* в исследуемом материале.
- 3. Набор сконструированных праймеров, подобранных концентраций реагентов и режима амплификации при проведении ПЦР в режиме реального времени для обнаружения α-токсина *Clostridium perfringens* обладает воспроизводимостью на 99,9%.
- 4. Алгоритм диагностики диарей, вызванных токсинпродуцирующими штаммами *Clostridium perfringens* у крупного рогатого скота, позволяет быстро, эффективно и экономически выгодно поставить диагноз.

Степень достоверности и апробация результатов работы. Результаты научных исследований, выводы и предложения обоснованы и базируются на экспериментальных данных. Исследования аналитических И с использованием современных методов анализа и расчёта. Доказана повторяемость полученных данных и их достоверность исследованием 439 проб биоматериала от крупного рогатого скота. Статистическая обработка цифровых показателей проведена с использованием программ Microsoft Excel 2016 и PAST персональном компьютере. Достоверность различий с применением t-критерия Стьюдента при уровне значимости р≤0,05.

Материалы исследований диссертационной работы с дальнейшей публикацией результатов были представлены:

- на XIV Международной научно-практической конференции «Current issues of modern science and practice», 2021;
- на X юбилейной международной научной конференции студентов, аспирантов и молодых ученых «Знания молодых для развития ветеринарной медицины и АПК страны», СПбГУВМ, Санкт-Петербург, 2021;
- на 24й ежегодной конференции Европейского общества репродукции домашних животных (ESDAR), John Wiley & Sons, 2021;
- на научно-практической конференции «Фундаментальные и прикладные аспекты микробиологии в науке и образовании», ФГБОУ ВО РязГМУ Минздрава России, Рязань, 2022;
- на XI международной научной конференции студентов, аспирантов и молодых ученых, посвященной году науки и технологий «Знания молодых для развития ветеринарной медицины и АПК страны», СПбГУВМ, Санкт-Петербург, 2022;

- на Международной научно-практической конференции «Экономически и социально значимые инфекции сельскохозяйственных животных: меры профилактики и борьбы», ФГБУ «ВГНКИ», Москва, 2022;
- на III национальной премии «Серебряный Микроскоп» в рамках XXXI Московского международного Ветеринарного конгресса, Москва, 2023;
- на Всероссийской научно-практической конференции «Современные технологии в медицинской микробиологии: наука, практика, инновации», посвященной 100-летию кафедры микробиологии Военно-медицинской академии имени С.М. Кирова, Санкт-Петербург, 2023;
- на Международной научно-практической конференции «Актуальные вопросы ветеринарной медицины и лабораторной диагностики», посвященной 100-летию со дня рождения профессора В.В. Рудакова, Санкт-Петербург, 2023.

Личный вклад соискателя. Диссертационная работа является результатом научных исследований автора в период с 2020 по 2023 гг. Результаты исследований получены автором лично или при его определяющем участии. Личный вклад соискателя заключается в разработке цели, определении задач, проведении экспериментов, анализе и интерпретации полученных результатов, написании статей, диссертационной работы и автореферата. Часть исследований и публикаций проведены и написаны в соавторстве. Соавторы научных публикаций не возражают против использования в диссертации материалов совместных исследований. Личный вклад соискателя в проведенные исследования и их анализ составляет 90%.

Публикации исследований. По результатов материалам диссертационной работы опубликовано 13 научных работ, из них 5 работ в изданиях, рекомендованных ВАК при Министерстве науки и высшего образования РФ, 7 публикаций в материалах научных и научно-практических опубликована конференций, 1 работа В журнале, индексируемом в международной базе данных Scopus.

Материалы исследований послужили основой для разработки методических рекомендаций и патента.

Соответствие диссертации паспорту научной специальности. Диссертация соответствует паспорту научной специальности 4.2.3. Инфекционные болезни и иммунология животных: пункты 4, 7, 16.

Объем и структура диссертации. Диссертационная работа изложена на 136 страницах компьютерного текста и включает следующие разделы: введение, литературы, собственные исследования, обсуждение результатов заключение, практические исследований, предложения, рекомендации и перспективы дальнейшей разработки темы исследования, список сокращений, условных обозначений, список литературы, приложение. Иллюстрационный материал диссертации работы включает 22 рисунка, 12 таблиц. Список использованной литературы включает 216 источников, в том числе 119 источников иностранных авторов.

2. СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ

2.1 Материалы и методы исследований

Исследование проводили в период с 2020 по 2023 годы на базе кафедры микробиологии, вирусологии и иммунологии федерального государственного бюджетного образовательного учреждения высшего образования «Санкт-Петербургский государственный университет ветеринарной медицины» (ФГБОУ ВО СПбГУВМ).

В работе использованы клинический, патологоанатомический, бактериологический, иммунологический, молекулярно-генетический, биоинформатический, аналитический и статистический методы исследований.

Всего было отобрано 439 проб у 225 голов крупного рогатого скота на территории 10 хозяйств Ленинградской области, 4 хозяйств Псковской области. Материалом для исследования служил патологический материал, отобранный от животных с диарейным синдромом, ранами и абсцессами, а также жидкость из навозного стока на территории животноводческих комплексов (Таблица 1).

№	Материал	Метод	Количество исследованных проб
1	Содержимое рубца	Бактериологический, NGS- секвенирование	6
2	Содержимое прямой кишки	Бактериологический, иммунологический, ПЦР-РТ	254
3	Ткани прямой кишки	Бактериологический, ПЦР-РТ	8
4	Гной и содержимое ран, абсцессов	Бактериологический, ПЦР-РТ	42
5	Содержимое матки, шейки матки и влагалища	Бактериологический, ПЦР-РТ	52
6	Молозиво и молоко	Бактериологический, NGS- секвенирование, ПЦР-РТ	57
7	Содержимое навозного стока	Бактериологический, ПЦР-РТ	20

Таблица 1 – Исследуемый материал методами лабораторной диагностики

2.1.1 Отбор проб и приготовление мазков для бактериоскопии

Отбор проб проводили с учетом общих правил ГОСТ 26503-85 «Животные сельскохозяйственные. Методы лабораторной диагностики клостридиозов» и методических указаний по отбору биологического материала для проведения лабораторных исследований, согласно методикам и инструкциям по отбору материала для проведения иммуноферментного анализа и ПЦР.

2.1.2 Бактериологический метод идентификации Clostridium perfringens

Первичный посев проводили в МПБ и на МПА, а также в среду Китта-Тароцци. Для получения чистой культуры использовали элективные и дифференциально-диагностические среды, а именно среду Китта-Тароцци, МПА, МПБ, сахарно-кровяной агар, глюкозо-кровяной агар Цейсслера, среду Вильсона-Блера, молоко, среды Гисса, среду из системы атмосферной генерации для *in vitro* диагностики AnaeroGen W-ZIP Compact для контроля роста анаэробов, обеспечивали при росте анаэробные условия с помощью системы атмосферной генерации для *in vitro* диагностики. Идентификацию микроорганизмов, полученных бактериологическим методом, проводили методом ПЦР в режиме реального времени. Подвижность определяли методом висячей капли.

Для проведения биохимической идентификации Clostridium perfringens использовали чистые культуры анаэробных микроорганизмов, выделенные из биологического материала, отобранные в соответствии с характерными свойствами. Дифференциацию от других микроорганизмов проводили при сравнении полученных биохимических и вирулентных свойств возбудителя со справочным материалом (Определитель бактерий Берджи), биологическим методом.

Для проведения микроскопии мазки окрашивали по Граму и методом Романовского-Гимзе, использовали световой микроскоп.

2.1.3 Экспресс-индикация энтеротоксина Clostridium perfringens в биологическом материале (в содержимом прямой кишки)

Для диагностики *in vitro* использовали набор RIDASCREEN *Clostridium perfringens* Enterotoxin (C0601, Германия), представляющий собой набор для осуществления иммуноферментного анализа для качественной идентификации энтеротоксина, выделяемого бактериями *Clostridium perfringens*, в 6 пробах содержимого прямой кишки, наличие антигена в которых было подтверждено методом ПЦР. Результат учитывали фотометрически в режиме 450 нм. Использовали иммунологический анализатор Multiskan FC.

2.1.4 Определение наличия *Clostridium perfringens* методом ПЦР в режиме реального времени

ДНК выделяли с помощью комплекта реагентов «ДНК-сорб-АМ» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, г. Москва) согласно инструкции. В работе использовали коммерческую тест-систему. Результат исследования экспериментального материала считали положительным при $Ct \leq 35$ по каналу Hex.

2.1.5 Метагеномный анализ микробиома содержимого рубца и молозива

Метагеномные исследования содержимого рубца и молозива выполняли методом секвенирования нового поколения (NGS), путём анализа гена прокариотической 16S-рибосомальной РНК (16S рРНК). Тотальную ДНК из исследуемых проб выделяли с использованием набора Genomic DNA Purification Kit («Fermentas, Inc.», Литва) согласно прилагаемой инструкции. Амплификацию для последующего секвенирования проводили на ДНК-амплификаторе Verity («Life Technologies, Inc.», США) с помощью эубактериальных праймеров, фланкирующих участок V1V3 гена 16S рРНК.

Использовали следующий режим амплификации: 3 минуты при 95 °C (1 цикл); 30 секунд при 95 °C, 30 секунд при 55 °C, 30 секунд при 72 °C (25 циклов); 5 минут при 72 °C (1 цикл).

Метагеномное секвенирование осуществляли на геномном секвенаторе MiSeq («Illumina, Inc.», США) с набором MiSeq Reagent Kit v3 («Illumina, Inc.», США). Таксономическую принадлежность микроорганизмов до рода определяли в программе RDP Classifier.

Математическую и статистическую обработку результатов проводили с применением программных пакетов Microsoft Office Excel 2016, PAST. Результаты статистического анализа считали значимыми при $p \le 0.05$.

2.1.6 Разработка праймеров для детекции генов *CPA* в биологическом материале

В рамках разработки тест-системы для идентификации *Clostridium perfringens* методом ПЦР-РТ был выбран участок гена *CPA*, кодирующий ген фосфолипазы С α-токсина штамма *Clostridium perfringens* CP322. Информацию об участке гена изучали с помощью GenBank — базы данных генетических последовательностей. За основу взяли последовательность нуклеотидов, подобранную коллективом ученых из Кореи (Chon J.W. и соавт., 2012). Последовательность нуклеотидов, специфичность гена подтверждали с помощью BLAST. Выравненную последовательность нуклеотидов изучали в программе SnapGene с помощью визуализации фрагментов ДНК.

Синтезировали следующие последовательности: прямой праймер (F) 5'-AAAAGAAAGATTTGTAAGGCGCTTAT-3', обратный (R) 5'-CCCAAGCGTAGACTTTAGTTGATG-3'. В экспериментальных целях для наибольшей эффективности реакции и учета результатов в программе гаситель флуоресценции, локализирующийся между праймерами, заменили на BHQ1. Получили зонд 5'-FAM TGC CGC GCT AGC AAC TAG CCT ATG G-3' BHQ1. реакции ПЦР, все реагенты используемые И ДЛЯ в исследовании, были синтезированы и приобретены у ООО «Бигль» (Санкт-Петербург, Россия).

С помощью комплекта реагентов «ДНК-сорб-В» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, г. Москва) выделяли ДНК из биологического материала согласно инструкции.

Эксперимент состоял в испытании 3 вариантов концентраций. Смесь реагентов вносили в пробирки объемом 0,2 мл белого цвета в стрипах в комплекте с плоскими оптически прозрачными крышками для проведения ПЦР в режиме реального времени.

Соблюдали следующий температурный режим: $50^{\circ}\text{C} - 2$ минуты, $95^{\circ}\text{C} - 10$ минут, 40 циклов $95^{\circ}\text{C} - 15$ секунд, $60^{\circ}\text{C} - 1$ минуту. Исследование проводили на анализаторе ПЦР в реальном времени Roche LightCycler 96 (Швейцария). Обработку данных проводили в соответствующей лицензионной программе Roche LightCycler 96.

2.2 Результаты исследований

2.2.1 Оптимизация отбора проб с применением инструмента для взятия проб фекалий из прямой кишки животных

Предлагаемый инструмент для взятия проб фекалий из прямой кишки животных имеет преимущества за счет изоляции пробы до момента ее закладки в индивидуальный контейнер для сбора фекалий. За счёт этого достигается высокая точность последующей диагностики, исключая травматический фактор для животного и ветеринарного специалиста, снижая трудовые затраты ветеринарных специалистов.

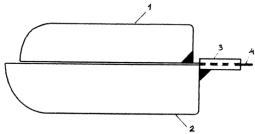
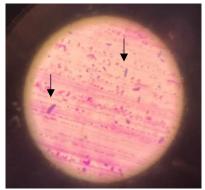



Рисунок 1 - Инструмент для взятия проб фекалий из прямой кишки животных, где 1 — верхняя половина; 2 — нижняя половина; 3 — ручка в виде трубки; 4 — цилиндрический пруток

Получен патент на полезную модель «Инструмент для взятия проб фекалий из прямой кишки животных» (RU 204004 U1 от 04.05.2021).

2.2.2 Идентификация выделенных изолятов Clostridium perfringens бактериологическим методом

При окрашивании нативных мазков методом Романовского-Гимзе обнаруживали толстые палочки со слегка закругленными концами, темнофиолетового цвета и капсулой светло-розового цвета (Рисунок 2).

Pисунок 2 – Микрокартина Clostridium perfringens, окраска по Романовскому-Гимзе, x100

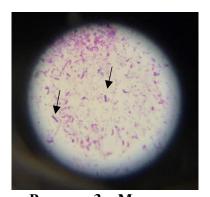


Рисунок 3 – Микрокартина Clostridium perfringens из колонии глюкозо-кровяного агара, окраска по Граму, x100

При окрашивании мазков по Граму из среды Китта-Тароцци и из колоний дифференциальных сред в поле зрения регистрировали грамположительные толстые палочки со слегка закругленными концами, расположенные одиночно (Рисунок 3).

Регистрировали рост на среде Китта-Тароцци, сопровождающийся помутнением среды в большей степени в сторону дна пробирки, бурным газообразованием спустя 12 часов культивирования в термостате (Рисунок 4). Регистрировали рост на жидкой среде Вильсона-Блера с черным помутнением и интенсивным газообразованием через 24 часа с момента посева (Рисунок 5).

Рисунок 4 – Рост *Clostridium perfringens* на среде Китта-Тароцци

Рисунок 5 – Рост *Clostridium perfringens* на среде Вильсона-Блера

На глюкозо-кровяном агаре регистрировали круглые, сочные, куполообразные S-колонии, с гладкими ровными краями, серовато-белые, мутные с зоной β-гемолиза (Рисунок 6).

Рисунок 6 – Колонии *Clostridium perfringens* на глюкозо-кровяном агаре, окруженные зоной β-гемолиза

Рисунок 7 – Колонии *Clostridium* perfringens на среде AnaeroGen W-ZIP Compact

На глюкозо-кровяном агаре Цейсслера колонии округлые, гладкие, выпуклые серовато-зеленые через 48 часов с момента посева, с зоной α-гемолиза. На среде из системы атмосферной генерации для *in vitro* диагностики AnaeroGen W-ZIP Compact (Рисунок 7), предназначенной для контроля роста анаэробов, регистрировали круглые, сочные, куполообразные S-колонии, с гладкими ровными краями, серовато-белые, мутные.

Из полученных чистых культур микроорганизмов готовили мазки, окрашивали по Граму. *Clostridium perfringens* представляли собой грамположительные палочки размером 0,9-1,3х3,0-9,0 мкм, плохо или не образующие в посевах споры, расположенные субтерминально. Методом висячей капли установили отсутствие подвижности *Clostridium perfringens* в выделенных культурах. Регистрация многочисленных грамположительных

палочек и спор позволяет предположить в исследуемых пробах биологического материала клостридий, морфологически схожих с *Clostridium perfringens*.

В результате определения биохимических свойств выделенных изолятов *Clostridium perfringens* установили ферментативные свойства возбудителя: на 3-5 сутки разжижает желатин, в молоке вызывает быстрое свертывание, сбраживает с образованием кислоты и газа глюкозу, лактозу, мальтозу, сахарозу и галактозу.

В результате исследования были изучены 296 проб содержимого прямой кишки и содержимого с примесью крови ран копыт и межпальцевой щели телят и коров с целью дифференциальной диагностики инфекционных болезней, клинически проявляющихся повышением температуры, отказом от корма, общей интоксикацией, диареей с примесью слизи и крови, обильным газообразованием, ранами с гнойным содержимым, нервными явлениями и др.

В результате дифференциации *Clostridium perfringens* от других анаэробных и факультативно анаэробных микроорганизмов выделили 95 изолятов облигатных и факультативных анаэробных микроорганизмов: 17,9% *Clostridium perfringens*, 24,2% *Clostridium spp*, 4,2% *Fusobacterium necrophorum*, 30,5% *Escherichia coli*, 9,5% *Streptococcus spp*, 11,6% *Salmonella enterica*, 2,1% *Proteus vulgaris* и их ассоциации, установили биохимические свойства (Таблица 2).

Таблица 2 – Дифференциация выделенных изолятов по биохимическим свойствам (n=95)

Микроорганизм	Биохимические (ферментативные) свойства									
	Желатин	Сероводород	Молоко	Глюкоза	Лактоза	Caxaposa	Маннит	Галактоза	Мальтоза	Глицерин
Clostridium perfringens, (n=17)	Разжижает на 3-5 сутки	1	Быстрое свертывание	+	+	+	•	+	+	+/-
Clostridium spp (n=23)	Разжижает на 2-4 сутки	1	Свертывание	+	-	1	1	1	+	-
Fusobacterium necrophorum (n=4)	+	+	-	+	-	+	+	1	+	-
Escherichia coli (n=29)	-	-	Свертывание	+	+	-	+	+	+	-
Streptococcus spp (n=9)	Разжижает в виде воронки	+	Свертывание	+	+	+	+	+	-	+
Salmonella enterica (n=11)	-	+	-	+	-	-	+	-	+	-
Proteus vulgaris (n=2)	+	+	Пептонизация	+	-	+	-	-	+	-

В молодой культуре, выделенной из содержимого с примесью крови ран копыт и межпальцевой щели телят и коров, обнаруживали длинные зернистоокрашенные нити, окрашивали карболовым фуксином и метиленовым синим. При проведении биопробы на белых мышах на 3 день наблюдали в окружности инъекции опухоль и нагноение, на 6 день – некроз. На 12 день регистрировали гибель мышей, при патологоанатомическом наблюдали некроз мышц конечностей, гнойные очаги в печени, легких, сердце. Мазки-отпечатки с печени проводили на глюкозо-кровяной агар. Через 48 часов регистрировали очень мелкие колонии S-формы, диаметром менее 1 мм, выпуклые, серо-белого цвета с ровными краями. Получили изоляты Fusobacterium necrophorum.

2.2.3 Индикация энтеротоксина Clostridium perfringens иммунологическим методом

Регистрировали среднюю оптическую плотность исследуемых проб $2{,}06\pm0{,}02$ Б (Таблица 3).

Таблица 3 — Результаты иммуноферментного теста для качественного определения энтеротоксина в пробах (n=6)

N° планшета 1	20220922-CLAS/0316-000001-1						
Референс	Лунка Коорд.	ОП	S/P соотношен	Результат			
Отрицат. контроль	A1	0,052					
Отрицат. контроль	B1	0,052					
Полож. контроль	C1	2,498					
Полож. контроль	D1	2,498					
01	E1	2,296	92 %	Р			
02	F1	1,965	78 %	Р			
03	G1	2,016	80 %	Р			
04	H1	2,254	90 %	Р			
05	A2	2,004	80 %	Р			
06	B2	1,819	72 %	Р			

Установили, что иммунологический метод диагностики позволяет идентифицировать токсинпродуцирующие штаммы *Clostridium perfringens* от возбудителей, не экспрессирующих ген *CPE*.

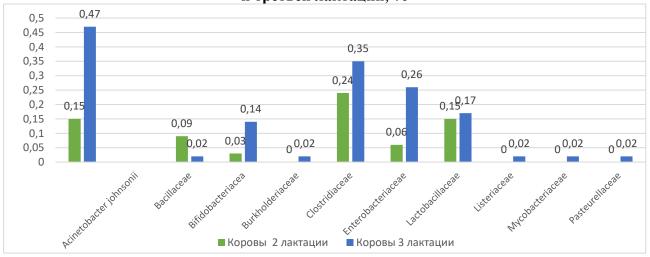
2.2.4 Результаты детекции генов Clostridium perfringens методом полимеразной цепной реакции в режиме реального времени

С помощью ПЦР идентифицировали штаммы Clostridium perfringens. В результате наблюдали экспоненциальный рост флуоресценции, пороговый цикл по каналу Нех наблюдали в 9 из 16 проб на $26,5\pm4,7$ цикле амплификации, что говорит о содержании ДНК Clostridium perfringens в исследуемых пробах.

2.2.5 Анализ микробиома содержимого рубца и молозива с помощью секвенирования нового поколения

По итогам проведенных исследований 2 групп коров с диарейным синдромом (n=3 в каждой группе) – коров дойного стада и коров на откорме – получены следующие результаты: при исследовании проб, полученных от коров на откорме, наиболее часто из семейства Ruminococcaceae регистрировали *Clostridium viride*, содержание которых достигало 2,6%. В пробах, полученных

от дойных коров, количество данных бактерий достигало 2,1% от всех обнаруженных микроорганизмов. Статистические данные приведены в Таблице 4.


Таблица 4 — Содержание видов клостридий в рубцовом содержимом дойных коров и коров на откорме. %

	0,819 8,81 6,01 0,07 2,6	0.013 0.015 0.01 0.03 0.03,34 1,52	0,007 0,018 0,018 0,08	0 0000 0 00000 0 000000000000000000000	0,031 0,032 0,025 0,023 0,033 0,033	0.03 0.03 0.01 0.01 0.01 0.05 0.05 0.05
	Коровы на откорме, образец №1	Коровы на откорме, образец №2	Коровы на откорме, образец №3	Дойные коровы, образец №1	Дойные коровы, образец №2	Дойные коровь образец №3
Clostridium vincentii	0,19	0,13	0,07	0,09	0,11	0,03
Clostridium purinilyticum	0,03	0,03	0,01	0,2	0,11	0,08
■ Clostridium aminophilum	0,19	0,15	0,58	0,03	0,03	0,03
Clostridium bolteae	0,01	0,01	0	0,05	0,25	0,06
■ Clostridium lactatifermentans	0,02	0,04	0,04	0,02	0,15	0,09
■ Clostridium lavalense	0,01	0,01	0,04	0,06	0,17	0,04
■ Clostridium colinum	0,07	0,01	0,18	0,01	0,02	0,01
■ Clostridium viride	2,6	1,52	2,24	0,19	0,28	2,1
■ Clostridium leptum	0	0,03	0	0,12	0,17	0,06
■ Прочие клостридии	0,1	0,34	0,08	0,15	0,38	0,19

Установили преобладание клостридий семейства Lachnospiraceae (Clostridium aminophilum, Clostridium bolteae, Clostridium lactatifermentans, Clostridium lavalense, Clostridium colinum).

В результате исследования микрофлоры молозива 2 групп коров с диарейным синдромом (n=10 в каждой группе) установили, что микробиальный состав молозива отличался в зависимости от периода лактации. Разнообразие видового состава микробиоты молозива в период третьей лактации было выше, чем во вторую лактацию (Таблица 5).

Таблица 5 — Содержание бактерий различных семейств в молозиве коров второй и третьей лактации, %

Отличие заключалось в содержании патогенных и условно-патогенных бактерий. Было обнаружено, что в третью лактацию содержание *Acinetobacter johnsonii* увеличилось в 3,1 раза. Представительство бактерий семейства Clostridiaceae было выше в 1,4 раза, семейства Enterobacteriaceae в 4,3 раза. В третью лактацию в молозиве были обнаружены представители семейств, отсутствовавшие во вторую — Burkholderiaceae, Listeriaceae, Mycobacteriaceae, Pasteurellaceae. Произошло уменьшение доли представителей семейства Bacillaceae более, чем в 4 раза. В то же время доля представителей семейства Bifidobacteriaceae возросла в 4,7 раза, а количество полезных лактобактерий осталось на том же уровне.

2.2.6 Результаты разработки и апробации праймеров для детекции гена *CPA* в биологическом материале

Учитывая длительность определения микроорганизмов *Clostridium* perfringens общепринятыми методами, ПЦР в режиме реального времени с модифицированным нами зондом является быстрым и эффективным способом идентификации возбудителя.

Был выбран оптимальный состав реагентов для проведения амплификации, приведенный в Таблице 6.

Таблица 6 – Испытуемая концентрация для ПЦР - РТ

No॒	Компонент	Количество (мкл)
1	ДНК	2
2	Forward - праймер	1
3	Reverse - праймер	1
4	Зонд FAM	1
5	ПЦР - смесь	10
6	Вода деионизованная высокой степени очистки	4,5
7	Таq-полимераза	0,5
	Итого:	20

В результате апробации праймеров установили, 5'-AAAAGAAAGATTTGTAAGGCGCTTAT-3' праймеры (F) что 5'-CCCAAGCGTAGACTTTAGTTGATG-3' являются высокочувствительными и специфичными к гену фосфолипазы С СРА. чувствительными при реакции со Праймеры оказались всеми экспериментальными испытуемыми концентрациями (Рисунок 8), зонд 5'-FAM TGC CGC GCT AGC AAC TAG CCT ATG G-3' BHQ1 с гасителем флуоресценции ВНQ1 позволяет проводить детекцию результатов по протоколу исследования в программе анализатора ПЦР в реальном времени Roche LightCycler 96 (Швейцария).

Наблюдали экспоненциальный рост флуоресценции, что говорит о содержании и обнаружении гена фосфолипазы С *CPA* в исследуемых пробах. В стрипе A7 использовали отрицательный контрольный образец выделения пробы, в стрипе B7 отрицательный контрольный образец реакции (Рисунок 9).

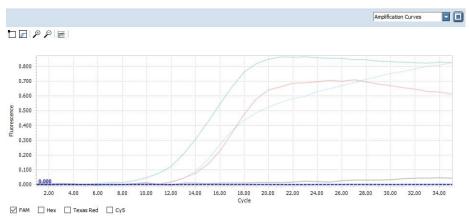


Рисунок 8 — Возрастающая экспонента проб с концентрациями №1, №2, №3 реагентов и ДНК *Clostridium perfringens*

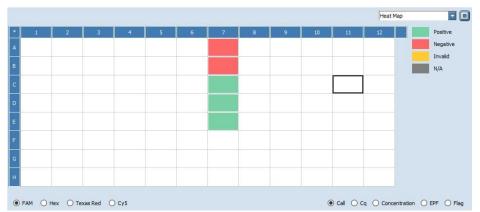


Рисунок 9 – Протокол исследования в программе Roche LightCycler 96

По результатам ПЦР в режиме реального времени установлен экспоненциальный рост флуоресценции в 65 пробах из 383 — пороговый цикл по каналу FAM регистрировали на $26,24\pm3,9$ цикле амплификации, что говорит о содержании гена фосфолипазы С CPA в исследуемых пробах.

2.2.7 Алгоритм диагностики диарей, ассоциированных с токсинпродуцирующими штаммами Clostridium perfringens

Предлагаемый нами алгоритм лабораторной диагностики представляет собой пошаговую систему правил выполнения в определенной последовательности операций (Рисунок 10), обеспечивающих лабораторную диагностику, а именно:

1. Отбор проб проводить с учетом общих правил ГОСТ 26503-85 «Животные сельскохозяйственные. Методы лабораторной диагностики клостридиозов» и методических указаний по отбору биологического материала для проведения лабораторных исследований, используя Инструмент для взятия проб фекалий из прямой кишки животных (патент на полезную модель RU 204004 U1 от 04.05.2021) с целью гигиенического отбора материала, снижения трудозатрат ветеринарного специалиста, исключения травматического фактора для животного.

- 2. Для повышения достоверности результатов рекомендуется проведение всех 3 методов (бактериологического, иммунологического и молекулярно-генетического) лабораторного исследования одномоментно.
- 3. Бактериологический метод проводить в соответствии с действующими ГОСТами и нормативными актами, включать бактериоскопию, культивирование микроорганизмов на элективных и дифференциальнодиагностических средах (Китта-Тароцци, Цейсслера, глюкозо-кровяной агар, среда в комплекте к системе атмосферной генерации для *in vitro* диагностики AnaeroGen W-ZIP Compact для контроля роста анаэробов и др.) и биопробу.

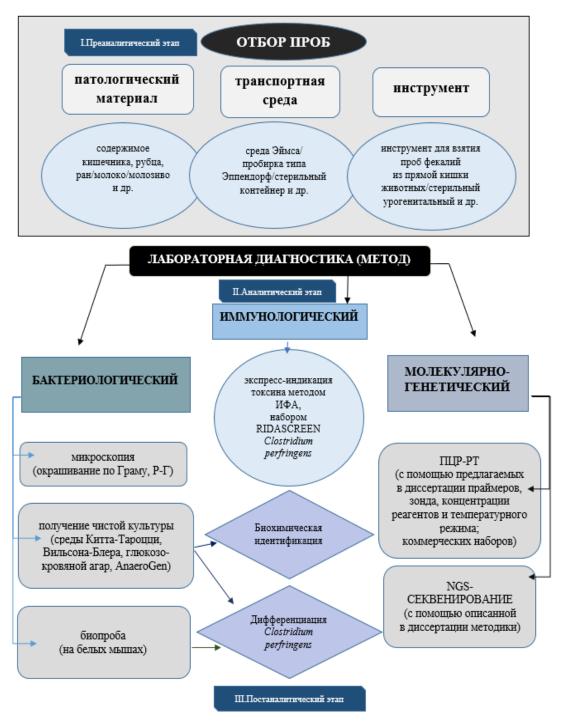


Рисунок 10 - Алгоритм диагностики диарей, ассоциированных с токсинпродуцирующими штаммами Clostridium perfringens

- 4. Иммунологический метод, заключающийся в экспресс-индикации энтеротоксина *Clostridium perfringens* в биологическом материале проводить с помощью набора RIDASCREEN *Clostridium perfringens* Enterotoxin.
- 5. Молекулярно-генетический метод, заключающийся в постановке ПЦР в режиме реального времени, проводить с использованием предложенной тестсистемы ПЦР-смеси объемом 20 мкл, праймерами (F) 5'-AAAAGAAAGATTTGTAAGGCGCTTAT-3' и (R) 5'-CCCAAGCGTAGACTTTAGTTGATG-3', модернизированным зондом 5'-FAM TGC CGC GCT AGC AAC TAG CCT ATG G-3' BHQ1.
- 6. Учет полученных результатов проводить строго в соответствии с инструкциями.
- 7. Диагноз ставить с учетом эпизоотических данных хозяйства, клинических признаков больных животных, патологоанатомических данных павших животных, полученных лабораторных данных.

Таким образом, по своей структуре и доказательности данный алгоритм диагностики определяет современные подходы к эффективной диагностике диарей, ассоциированных с токсинпродуцирующими *Clostridium perfringens*, что позволяет снизить количество случаев с неблагоприятным характером течения заболевания.

3. ЗАКЛЮЧЕНИЕ

- 1. Установлены биологические свойства штаммов *Clostridium perfringens*, полученных от крупного рогатого скота с диарейным синдромом в Северо-Западном федеральном округе, которые характерны для данного микроорганизма вне зависимости от локализации. Проведена экспрессиндикация энтеротоксина с помощью иммуноферментного анализа, позволяющая дифференцировать токсинпродуцирующие штаммы *Clostridium perfringens* от не продуцирующих токсин штаммов.
- Определен видовой состав микроорганизмов в патологическом материале от животных с диарейным синдромом методом секвенирования нового поколения: в содержимом рубца преимущественно обнаруживали клостридии семейства Ruminococcaceae, вида Clostridium viride (содержание достигало 2,6% у коров на откорме и 2,1% у коров дойного стада); семейства Lachnospiraceae, вида Clostridium aminophilum (содержание достигало до 0,5% у коров на откорме и 0,03% у коров дойного стада). Видовой состав микробиоты в период третьей лактации был выше, чем во вторую лактацию за счет патогенных и условно-патогенных бактерий: Acinetobacter johnsonii в 3,1 раза, Clostridiaceae в 1,4 раза, Enterobacteriaceae в 4,3 раза; были обнаружены представители отсутствовавшие вторую (Burkholderiaceae, Listeriaceae, семейств, во Mycobacteriaceae, Pasteurellaceae).
- 3. Праймеры для определения *Clostridium perfringens*, кодирующие ген фосфолипазы С α-токсина чувствительны и специфичны, зонд с модернизированным гасителем флуоресценции для обнаружения в материале искомой ДНК комплиментарен искомой последовательности-мишени;

соблюдение условий проведения реакции (концентрации реагентов и температурный режим) обуславливает воспроизводимость на 99,9%.

4. Алгоритм диагностики диарей, заключающийся в пошаговой идентификации возбудителя, позволяет увеличить процент выявления токсинпродуцирующих штаммов *Clostridium perfringens* в материале от крупного рогатого скота.

4. ПРАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ

Основные научные положения работы и ее результаты рекомендуется использовать на современных предприятиях по содержанию крупного рогатого скота, в работе ветеринарных специалистов, в учебном процессе для студентов, аспирантов, научных работников, а также на курсах повышения квалификации и при профессиональной переподготовке кадрового состава зоотехнического и ветеринарного профиля, в научно-испытательных лабораториях.

Методические рекомендации «Алгоритм проведения клиниколабораторной диагностики диарей у крупного рогатого скота, ассоциированных с энтеротоксинпродуцирующими штаммами *Clostridium perfringens*», утвержденные Методическим советом ФГБОУ ВО СПбГУВМ 01 февраля 2023 года (протокол №1), рекомендуются для специалистов в области лабораторной диагностики.

Практикующим ветеринарным врачам и специалистам хозяйств для оптимального по зоогигиеническим и микробиологическим параметрам отбора проб из прямой кишки крупного рогатого скота предлагается к применению патент на полезную модель «Инструмент для взятия проб фекалий из прямой кишки животных» (RU 204004 U1 от 04.05.2021).

5. РЕКОМЕНДАЦИИ И ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

На основании вышеизложенного можно выделить следующие перспективы дальнейшей разработки темы:

- разработка и изучение молекулярно-генетических методов диагностики токсинпродуцирующих штаммов *Clostridium perfringens* и бактерий кишечной группы для мультиплексной ПЦР, которые позволят повысить экономическую эффективность диагностики, лечения и профилактики анаэробных инфекций;
- изучение распространения других штаммов *Clostridium perfringens*, способных продуцировать токсины на территории Северо-Западного федерального округа;
- определение механизмов антибактериальной резистентности *Clostridium* perfringens;
- создание питательных сред для культивирования анаэробных микроорганизмов, не требующих специальных условий хранения и обладающих высокой устойчивостью и сохранением питательного субстрата в условиях лаборатории.

6. СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

Публикации в рецензируемых научных журналах согласно перечню ВАК Российской Федерации:

- 1. Моисеева, К. А. Повышение сохранности поголовья цыплятбройлеров при применении комплекса дополнительного питания "Пробиоцид®-Ультра" в условиях заражения Clostridium perfringens / Н. В. Тарлавин, В. В. Веретенников, Э. Д. Джавадов, К. А. Моисеева [и др.] // Международный вестник ветеринарии. — 2021. — № 4. — С. 24-28. — DOI 10.52419/issn2072-2419.2021.4.24.
- 2. Моисеева, К. А. Разнообразие форм клостридий в рубцовом содержимом дойных коров и коров на откорме / К. А. Моисеева, Н. В. Тарлавин, В. В. Веретенников [и др.] // Международный вестник ветеринарии. -2021. № 1. C. 205-208. DOI 10.17238/issn2072-2419.2021.1.205.
- 3. Как защитить птицу от клостридиоза? / Е. А. Йылдырым, Г. Ю. Лаптев, Н. И. Новикова, К. А. Моисеева [и др.] // Птицеводство. -2021. № 12. C. 35-38.
- 4. Моисеева, К. А. Идентификация изолятов Clostridium perfringens и Fusobacterium necrophorum / К. А. Моисеева, А. А. Сухинин, М. Р. Попова // Нормативно-правовое регулирование в ветеринарии. 2023. № 2. С. 42-45. DOI 10.52419/issn2782-6252.2023.2.42.
- 5. Моисеева, К. А. Разработка и апробация тест-системы для полимеразной цепной реакции с целью выявления альфа-токсина Clostridium Perfringens / К. А. Моисеева // Международный вестник ветеринарии. 2023. № 2. С. 48-54. DOI 10.52419/issn2072-2419.2023.2.48.

Статьи, опубликованные в сборниках материалов конференций:

- 1. Моисеева, К. А. Технология идентификации штаммов Clostridium perfringens, продуцирующих энтеротоксин / К. А. Моисеева, А. А. Сухинин, А. С. Кветная // Знания молодых для развития ветеринарной медицины и АПК страны : Материалы X юбилейной международной научной конференции студентов, аспирантов и молодых ученых, посвященной году науки и технологий, Санкт-Петербург, 23–24 ноября 2021 года. Санкт-Петербург: Санкт-Петербургский государственный университет ветеринарной медицины, 2021. С. 243-244.
- 2. Моисеева, К. А. Идентификация изолятов Clostridium perfringens с использованием бактериологического и молекулярно генетического методов / К. А. Моисеева, А. А. Сухинин, С. А. Макавчик // Фундаментальные и прикладные аспекты микробиологии в науке и образовании : материалы международной научно-практической конференции, Рязань, 25–26 мая 2022 года. Рязань: Рязанский государственный медицинский университет имени академика И.П. Павлова, 2022. С. 96-99.
- 3. Моисеева К. А., Сухинин А. А. Роль токсинов Clostridium perfringens в развитии инфекций человека и животных // The XIV International Science Conference «Current issues of modern science and practice», Rome, Italy May 17 19, 2021. C.219-221.

- 4. Моисеева, К. А. ПЦР-диагностика штаммов Clostridium perfringens в исследуемом материале крупного рогатого скота / К. А. Моисеева, А. А. Сухинин // Знания молодых для развития ветеринарной медицины и АПК страны : материалы XI международной научной конференции студентов, аспирантов и молодых ученых, Санкт-Петербург, 24—25 ноября 2022 года. Санкт-Петербург: Санкт-Петербургский государственный университет ветеринарной медицины, 2022. С. 275-276.
- 5. Моисеева К. А. Цитопатогенное действие энтеротоксинпродуцирующих штаммов Clostridium perfringens у крупного рогатого скота / К. А. Моисеева, А. А. Сухинин, А. С. Кветная [и др.] // Экономически и социально значимые инфекции сельскохозяйственных животных: меры профилактики и борьбы : материалы Международной научнопрактической конференции / Под. общ. ред. Л.К. Киша, А.Н. Панина. М.: Издательство «Сельскохозяйственные технологии», 2022. С. 166-175.
- 6. Моисеева К. А. Методика подбора и оптимизации праймеров для типизации А-токсина Clostridium perfringens / К.А. Моисеева, М.Р.Попова //Актуальные вопросы ветеринарной медицины и лабораторной диагностики : материалы международной научно-практической конференции, посвященной 100-летию со дня рождения профессора В.В. Рудакова / редкол.: Л.Ю. Карпенко, А.А. Бахта, А.И. Козицына [и др.]; МСХ РФ, СПбГУВМ. Санкт-Петербург, 2023. С. 211-213.
- 7. Моисеева, К. А. Современные методы проведения лабораторной диагностики крупного рогатого скота, ассоциированных диарей У с энтеротоксинпродуцирующими штаммами Clostridium perfringens / К. А. Моисеева, А. А. Сухинин, А. С. Кветная // Микробиология военной медицине и здравоохранению. Современные технологии: наука, практика, инновации: Материалы Всероссийской научно-практической конференции, посвященной 100-летию со дня основания кафедры микробиологии Военно-медицинской академии имени С.М. Кирова, Санкт-Петербург, 11–12 мая 2023 года / Под редакцией Б.Ю. Гумилевского. – Санкт-Петербург: Военно-медицинская академия имени С.М.Кирова, 2023. – С. 111-114.

Статьи, опубликованные в журналах, включенных в международные базы цитирования Scopus:

1. Comparison of colostrum microflora in second and third lactation in Holstein cows / A. Belikova, K. Moiseeva, N. Tarlavin [et al.] // Reproduction in Domestic Animals. $-2022.-Vol.\ 57.-No\ S1.-P.\ 120.-DOI\ 10.1111/rda.14052.$

Патенты на полезную модель:

1. Патент на полезную модель № 204004 U1 Российская Федерация, МПК А61D 7/00. Инструмент для взятия проб фекалий из прямой кишки животных: № 2020136875: заявл. 09.11.2020: опубл. 04.05.2021 / К. А. Моисеева, А. А. Сухинин, Е. И. Приходько [и др.]; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования Санкт-Петербургский государственный университет ветеринарной медицины.